

MTS GROUND VEHICLE SOLUTIONS

Booth 8310 Automotive Testing Expo Europe 2024

Automotive OEMs and suppliers worldwide rely on MTS for the testing technologies, expertise, and support needed to accelerate next generation vehicle development while meeting energy efficiency and decarbonization targets. Visit Booth 8310 and explore how MTS solutions can help you achieve more sustainable vehicle engineering and thrive in a competitive global market.

Hans-Peter Beggel Senior System Engineer

– MTS Technology Forum Presentations -

Using K&C Hybrid Simulation to Accelerate Active Chassis Development

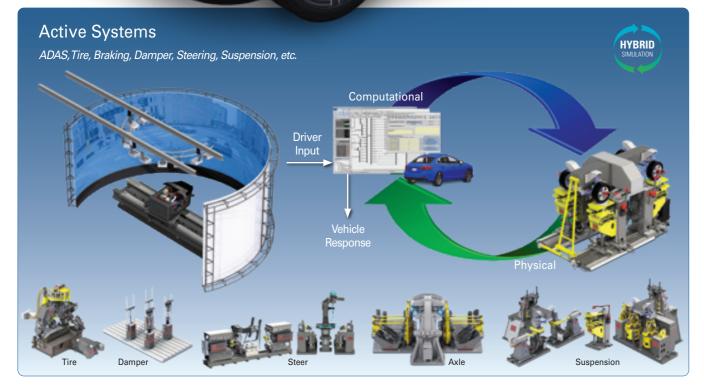
Thomas Stachel Principal Staff Engineer

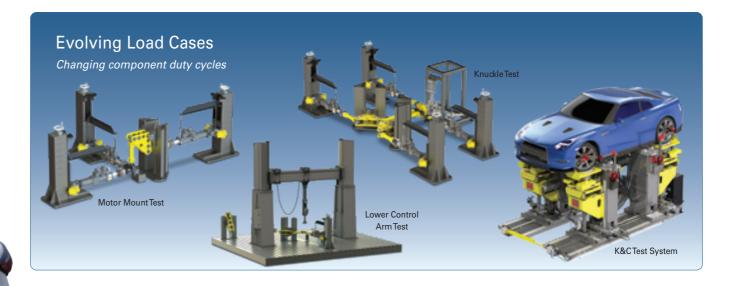
Date: Wednesday - 5 June 2024 Time: 11:40 Stage: Hall 8

Reduce Energy Usage by +35% Using Hybrid HPU Technology

James Hennen Senior Business Development Manager

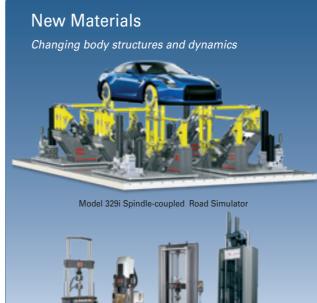
Date: Wednesday - 5 June 2024 Time: 14:20 Stage: Hall 10




Learn more on page 8

Electric & Autonomous Vehicle Testing Solutions

With a proven portfolio of laboratory-based testing solutions for materials, components, subsystems, and full vehicles, MTS is uniquely positioned to help vehicle OEMs and component suppliers confront the myriad challenges posed by electric and autonomous vehicle development, including:


- » Active Systems
- » Evolving Load Cases
- » Rigorous Energy Evaluation
- » New Materials
- » Stiffer Designs

Flat-Trac[®] Dynamometer

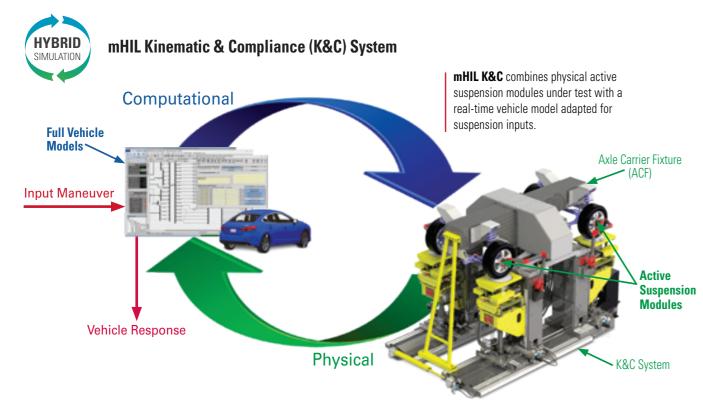
MTS Materials Test Systems

Turnkey EV Battery Test System

MTS Landmark Test System

Technology Forum -

Presenter: Thomas Stachel Principal Staff Engineer

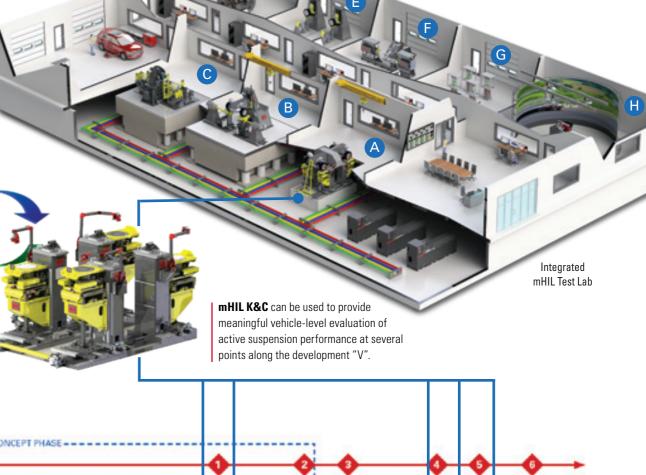

Date: Wednesday - 5 June 2024 Time: 11:40 Stage: Hall 8

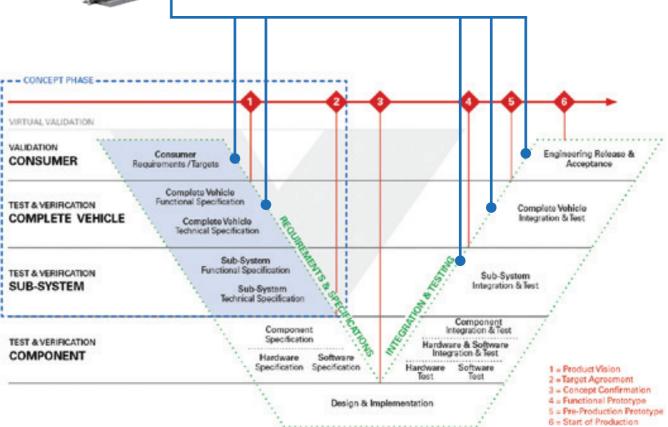
Using K&C Hybrid Simulation to Accelerate Active **Chassis Development**

Meaningful evaluation of interconnected active systems used in next-generation ICE, electric, and autonomous vehicles must extend from early-stage modeling through proving ground validation, which presents numerous simulation challenges for OEMs.

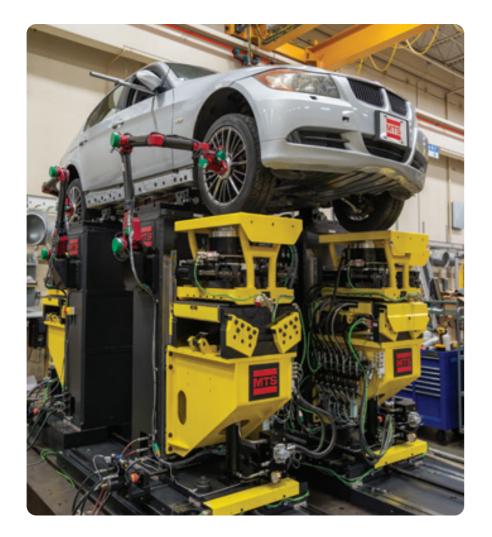
MTS has proven that hybrid simulation can be used to establish vehicle-level simulation environments where developers can evaluate, integrate, test drive, and certify active systems well in advance of full-vehicle prototypes.

Thomas' presentation introduces mHIL K&C, a hybrid simulation approach that integrates vehicle models and active suspension modules under test to enable meaningful vehicle-level evaluation of suspension performance throughout the development cycle to realize faster, more efficient active chassis development.


Mechanical Hardware In-the-Loop (mHIL)


is a proven hybrid simulation technique that integrates a computational vehicle model with a physical sub-system under test in a closed control loop to establish a real-time, vehiclelevel simulation environment. This environment can be employed across all phases of vehicle development to simulate real-world driving or proving ground events in the test lab, allowing test engineers to integrate, test drive, and certify active system performance well in advance of functional, full vehicle prototypes.

These simulations provide the mechanical test feedback needed to optimize vehicle models, accelerate subjective and objective evaluation, reduce the need for rework and prototypes, and streamline proving ground validation.


Collaborative Chassis Tuning Environment

MTS has pursued mHIL solutions to complement a broad array of physical test systems, including those purpose-engineered for damper, tire, steering system, suspension, axle, and drivetrain testing. A fully integrated mHIL lab with a driving simulator functions as a collaborative tuning environment to enable faster, more efficient active chassis development.

- A. K&C System with Axle Carrier Fixture
- B. Ride Comfort Roadway with Axle Carrier Fixture C. 6DOF Road Simulator – Axle D. Tire Force & Moment Measurement System
- E. Quarter-car Suspension Test Systems
- F. Power Steering Test System
- G. Damper Test Systems
- H. Driving Simulator

The latest addition to MTS' K&C portfolio is purpose-built for precise and repeatable passenger car and SUV suspension measurement.

Smaller, lighter and easier to install than its predecessors, this new Passenger Car K&C system performs the full spectrum of kinematics and compliance deflection measurement applications, including suspension and steering characterization, benchmarking and target setting, model verification, evaluating design changes, and diagnosing problems. As with all MTS K&C systems, system-level calibration methods are employed to ensure optimal measurement accuracy.

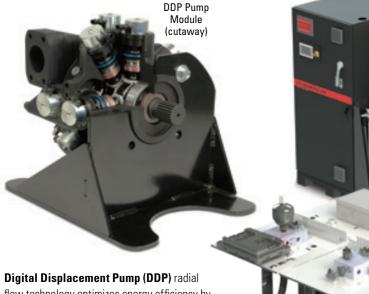
Ideal for characterizing fast-evolving electric vehicle designs, the nextgeneration Passenger Car K&C system features re-engineered steer input assemblies with increased torque and angle, new high-fidelity wheel motion sensors, new highly adjustable body lamping, increased track width and wheelbase adjustment, and a new operator's pendant for safe test vehicle installation.

State-of-the art MTS controls and software can be used to extend the utility of K&C systems to include dynamic operation, real-time hybrid simulation, and the integration of ancillary EtherCAT devices.

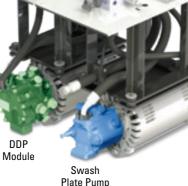
- » Fixturing provided for quickly verifying machine accuracy between formal calibration events

Technology Forum

Presenter: James Hennen Senior Business Development Manager


Date: Wednesday - 5 June 2024 Time: 14:20 Stage: Hall 10

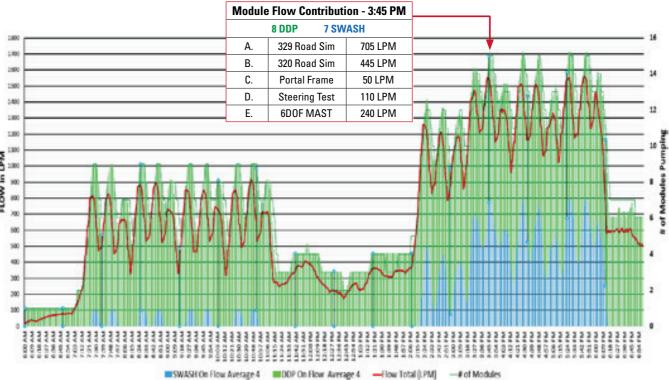
Reduce Energy Usage by +35% Using Hybrid HPU Technology


The need to maximize energy efficiency and comply with regional and global decarbonization mandates poses daunting challenges for test laboratory managers.

In response, MTS has engineered a new, hybrid approach to hydraulic power generation that employs state-of-the-art digital displacement (radial flow) technology to modulate flow during typical demand, while engaging conventional swash plate (axial flow) technology to achieve maximum efficiency during peak use.

James' presentation examines the benefits of this new hybrid power generation technology, presents data that demonstrates its effectiveness, and explores the numerous ways it will be integrated throughout existing test laboratory infrastructure to dramatically reduce energy usage.

flow technology optimizes energy efficiency by digitally controlling individual pump pistons. Each piston's motion is precisely adjusted, allowing the pump to adapt to changing flow demands. This highly responsive, dynamic operation dramatically reduces energy wastage associated with traditional fixed-speed, swash plate (axial flow) pumps. By eliminating inefficient throttling valves and reducing pressure losses, digital displacement pumps achieve precision flow control and maximum efficiency.


Module

SilentFlo Gen 4 HPUs will feature an innovative hybrid approach to hydraulic power generation that employs highly efficient radial flow digital displacement pump modules (green) to modulate flow during typical demand, while engaging conventional axial flow swash plate pump modules (blue) as needed to achieve maximum energy efficiency during peak use.

SilentFlo Gen 4 HPU

A High-throughput Durability Test Lab

employs innovative Gen 4 hybrid HPU technology and MPCM monitoring to meet a full day's hydraulic flow requirements using a multi-generational array of SilentFlo HPUs. The time history below illustrates how DDP modules (green) and swash plate modules (blue) are engaged across the four HPUs to meet 12 hours of wide ranging flow demand (red) with maximum precision and efficiency.

A Sustainable Test Ecosystem

integrates new SilentFlo Gen 4 hybrid HPU technology, precision DuraGlide® test actuation, advanced MPCM monitoring, and state-of-theart SafeGuard[™] hydraulic distribution to enable high-fidelity, high-throughput test and simulation while achieving optimal levels of energy efficiency and safety.

Multi-Pump Control Manager (MPCM)

Proven, Reliable Lab-based Assessment Solutions

MTS sets the standard for providing highly accurate and repeatable correlation between the proving ground and the lab with a broad array of proven durability testing solutions. Comprising a variety of robust, multi-degree-of-freedom test rigs and industry-renowned RPC[®] Connect software, the MTS portfolio includes all the tools you'll need to accurately evaluate the durability of components, subsystems and full-vehicles, ranging from motorcycles to passenger cars to heavy trucks and agricultural equipment.

The MTS durability portfolio features:

- » Model 329i Spindle-Coupled Road Simulators that provide up to six degrees of measurement and control at each of the vehicle spindles to deliver the most efficient, accurate and repeatable reproduction of even the most challenging proving ground road surfaces, maneuvers and events.
- » Model 320 Tire-Coupled Road Simulators for both early stage testing and full vehicle assessment
- » Versatile multiaxial simulation table (MAST™) systems for general component and subsystem testing
- » Numerous subsystem-specific testing solutions
- » A variety of elastomer, damper, bushing and materials test solutions
- » Leading-edge hybrid simulation solutions

Ball Joint Test System

Multiaxial Simulation Table (MAST) Systems

Tire-coupled Road Simulators

Damper Test Systems

kle Test Systems

Spindle-coupled Road Simulators

Expanding MAST Capabilities

High Frequencies - Models 353.20, 353.50 & 354.20

Address emerging electric vehicle battery testing needs and comply with various international standards.

- » Test up to 200 Hz when performing Power Spectral Density (PSD) tests and Time History (TH) replication
- » Apply force and motion in full six-degrees-of-freedom
- » Streamlined integration with third-party environmental chambers, battery cyclers - or battery management systems - and specimen monitoring systems
- » Functional safety per ISO 13849-1:2015 (Safety of machinery Safety related parts of control systems)

High Payloads - Models 353.50 & 354.20

Test larger, heavier electric vehicle, commercial truck and agricultural vehicle components, assemblies, and subsystems.

- » Test specimens up to 3000 kg (353.50) and 2000 kg (354.20)
- » Choose from a variety of standard and custom table sizes/ configurations (largest: 2.5 x 2.5-meter square)

Large Geometry Specimens - Model 354 LG

Conduct vibration tests on large battery packs used in next-generation commercial and off-highway electric vehicles.

- » Accommodate large lithium-ion battery packs on a 2.5 x 3.5 meter table
- » 6DOF 12-actuator (dodecapod) configuration
- » Test specimens up to 2000 kg at 200 Hz
- » Meet ISO 12405, UN R100, UN R136, and UN 38.3 requirements
- » Compatible with third-party environmental chambers, battery management systems, and specimen monitoring systems

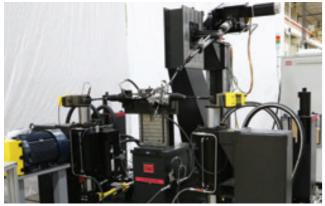
Advanced Compensation Tools - FlexTest Software (793)

Achieve the highest levels of MAST system controllability and fidelity to accelerate RPC drive file convergence.

- » Degree of Freedom Control establishes a coordinate space where actuators work in 6DOF concert
- » Three-Variable Control enables simultaneous control of displacement, velocity, and acceleration variables
- » Amplitude Phase Control (APC) compensates for errors between command and feedback sine waves
- » Adaptive Harmonic Cancelation (AHC) removes distortion and generates clean sinusoidal inputs in conjunction with APC

Model 353.20

Model 354.20

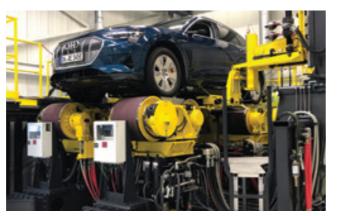

Vehicle Dynamics Solutions

MTS offers a broad selection of test & simulation solutions designed to help you gain precise measurements earlier in the development cycle, enabling more efficient optimization of component, system and full-vehicle performance. The MTS vehicle dynamics portfolio features:

- » Flat-Trac[®] Roadways, which combine tire-coupled road simulation and flat-belt roadway technology to create a realistic laboratory environment for evaluating noise, vibration transmissibility, suspension performance, and fuel economy
- » MTS Kinematic & Compliance (K&C) systems for quickly and efficiently measuring key suspension parameters
- » Dynamic Kinematic & Compliance (DK&C) systems for simulating rough road inputs and transient maneuvers
- » State-of-the-art single and multi-belt wind tunnel rolling road systems for evaluating vehicle aerodynamics
- » Numerous subsystem-specific testing solutions
- Robust and efficient tire force and moment measurement, rolling resistance measurement and tread wear simulation systems
- » A variety of elastomer, damper and materials characterization solutions
- » Leading-edge hybrid simulation solutions

Elastomer Test Systems

Steering Test Systems


Dynamic Kinematic & Compliance (K&C) Systems

Tire Force & Moment Measurement Systems

Multiaxial Simulation Table (MAST) Systems

Dynamic Flat-Belt Roadways

Expanding MAST Capabilities: Dual-Mode MAST System

Electric and autonomous vehicles are driving an intensified focus on occupant ride comfort, prompting increased need for human-rated, 6DOF vibration simulation capabilities. To help meet these demands, the new Model 353.20 DM (Dual Mode) MAST delivers an expanded application range that includes both durability and NVH testing, and occupants-on-the-table ride comfort evaluation. Driven by ISO 13849-1:2015 (Safety of machinery – Safety related parts of control systems), the 353.20DM integrates advanced MTS Safety PLC technology, new hydromechanical manifolds, an array of human interfaces and test space monitoring devices to ensure safe and efficient switching between full-performance durability testing and reduced-performance ride comfort evaluation.

HYBRID _____ mHIL Steer Test System __

Accelerate ADAS Steering Development

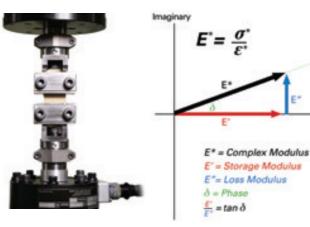
Use proven mechanical Hardware-inthe-Loop (mHIL) technology to create a real-time, vehicle-level simulation environment for evaluating hydraulic, electric, or steer-by-wire power steering systems and ADAS steering functionality well in advance of functional, full vehicle prototypes. mHIL Steer combines a physical power steering system under test with a real-time vehicle model adapted for steering inputs. This hybrid simulation setup can employ an MTS standard 3-5 channel multi-purpose servohydraulic steer test system, or alternatively, a custom all-electric performance variant available in 2-3 channels.

Available via turnkey system or 353.20 field upgrade, MTS Dual Mode MAST technology is purpose-engineered for conducting humanrated vibration simulation that complies fully with ISO 13090-1 and ISO 2631-1.

- » Enhance CAE model development
- » Conduct accurate simulations earlier in vehicle development
- » Dramatically reduce proving ground dependency, validation costs and need for prototypes

MTS Elastomer Testing Portfolio

Model 830 System


MTS Acumen[®] Test Systems

Ideal for automotive elastomer characterization and materials lightweighting, MTS Acumen Electrodynamic Test Systems deliver superior precision and ease of use for dynamic and static testing. Energy-efficient electrodynamic actuation enables these flexible systems to be installed quickly with minimal impact in your facility.

ELASTOMER CHARACTERIZATION

Measure the static and dynamic behaviors of tire materials, suspension components, and engine and exhaust mounts.

LIGHTWEIGHTING

Determine the static and dynamic properties of plastics, composites, metals, fasteners and adhesives.

The Evolving MTS Damper Portfolio

The MTS damper testing portfolio continues to evolve, adapting to meet more challenging test requirements and growing demands for improved test system efficiency. Once exclusively servohydraulic, this expanded portfolio now features both high-performance electric and servohydraulic systems to fulfill a complete range of test applications, spanning quality, characterization, friction force, noise and durability.

Accelerate Active & Semi-active Damper Development

Use proven mechanical Hardware-inthe-Loop (mHIL) technology to create a real-time, vehicle-level simulation environment for testing semi-active or active damper, suspension, and body control systems.

- » Enhance CAE model development
- » Conduct accurate simulations earlier in vehicle development
- » Dramatically reduce proving ground dependency, validation costs and need for prototypes

SERVOHYDRAULIC

The **mHIL Damper Test System** combines a physical sub-system of components with a vehicle model adapted for damper and spring inputs.

Modular TestLine[™] Solutions

Precision-engineered components for building your test stand right the first time

TestLine Solutions comprise a versatile and reliable set of modular test components and standard hardware and software tools that enable you to create cost-effective test systems that can be reconfigured as your needs change. You supply the in-house design capability and imagination, MTS provides the premium-quality products and components to help build your test solution right the first time.

Precision-engineered to the highest quality and designed for seamless integration, the modular components and the standard hardware and software used in TestLine Solutions are the same as those integrated into the most advanced MTS custom test systems.

MTS, MTS Acumen, Flat-Trac, FlexTest, RPC, MTS DuraGlide and MTS SureCoat are registered trademarks and ePost, MAST, MTS SafeGuard, MTS SmartService, SilentFlo, and TestLine are trademarks of MTS Systems Corporation in the United States. These trademarks may be protected in other countries. RTM no. 211177.

MOCOKIT is a registered trademark of CFM Schiller GmbH.

Products or company names other than trademarks of MTS Systems are used for identification purposes only and may be trademarks of their respective owners.

© 2024 MTS Systems Corporation • ATE Stuttgart backgrounder • 06/24

MTS Systems (Germany) GmbH

Berlin/Headquarters Tel: +49 (0) 30 81002-0 Email: euroinfo@mts.com

MTS

Stuttgart Office Tel: +49 175 2984167

Email: shwan.sabir@mts.com

ISO 9001 CERTIFIED QMS